Comparison of Artificial Neural Network and Physically Based Models for Estimating of Reference Evapotranspiration in Greenhouse

نویسنده

  • Mohammad Javad Amiri
چکیده

Evapotranspiration (ET) is one of the major components of hydrologic cycle. Accurate estimation of this parameter is essential for studies such as water balance, irrigation system design and management, and water resources management. Generally we used climate data for calculating evapotranspiration from indirect methods. This study investigates the utility of artificial neural networks (ANNs) for estimation of daily grass reference crop evapotranspiration (ET0) and compares the performance of ANNs with the conventional methods (Penman, Penman-Monteith, Stanghellini and Fynn) used to estimate ETo in Greenhouse. In the present study, the meteorological variables including air temperature, solar radiation, wind speed and relative humidity were considered daily. The daily outputs from on four physical ET and artificial neural networks have been tested against reference evapotranspiration data computed by the lysimeter to assess the accuracy of each method in estimating grass reference evapotranspiration in greenhouse. The accuracy of ANNs is the best but the accuracy of the Penman equation is the worse for estimating daily evapotranspiration compared with the other equations. In ranking the equations, Stanghellini equation, Penman–Monteith and Fynn, equation ranked in a second, third and forth places, respectively. The results showed the ANNs, Penman and P-M models overestimated ET, while the Fynn and Stanghellini models underestimated ET. The efficiency values of Penman, Fynn, P-M, Stanghellini and ANNs were 0.68, 0.72, 0.86, 0.907 and 0.93 respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates

Evaporation is a fundamental parameter in the hydrological cycle. This study examines the performance of M5model tree and artificial neural network (ANN) models in estimating potential evapotranspiration calculated byPenman- Monteith and Hargreaves- Samani equations. Daily weather data from two meteorological stations in asemi-arid climate of Iran, namely Kerman and Zahedan, were collected duri...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station

Evapotranspiration is one of the most important components of the hydrology cycle for planning irrigation systems and assessing the impacts of climate change hydrology and correct determination is important for many studies such as hydrological balance of water, design of irrigation irrigation networks, simulation of crop yields, design, optimization of water resources, nonlinearity, inherent u...

متن کامل

Comparison of Artificial Neural Network Training Algorithms for Predicting the Weight of Kurdi Sheep using Image Processing

Extended Abstract Introduction and Objective: Due to weakness, the occurrence of unwanted errors, the impact of the environment and exposure to natural events, human always make mistakes in their diagnoses of the environment or different topics, so that different people 's perception of a single and unique event may be very different and be diverse. Nowadays, with the development of image proc...

متن کامل

Temperature-Based Feed-Forward Backpropagation Artificial Neural Network For Estimating Reference Crop Evapotranspiration In The Upper West Region

The potential of modeling the FAO Penman-Monteith (FAO-56 PM) method for computing reference crop evapotranspiration (ETo) using feed-forward backpropagation artificial neural networks (FFBANN) with minimal measured climate data such as with the air temperature (maximum and minimum) was investigated using local climatic data from the Wa Meteorological weather station. Three FFBANN models were d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009